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A numerical method for simulating discontinuous shallow
flow over an infiltrating surface
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SUMMARY

A numerical method based on the MacCormack finite difference scheme is presented. The method was
developed for simulating two-dimensional overland flow with spatially variable infiltration and micro-
topography using the hydrodynamic flow equations. The basic MacCormack scheme is enhanced by
using the method of fractional steps to simplify application; treating the friction slope, a stiff source term,
point-implicitly, plus, for numerical oscillation control and stability, upwinding the convective accelera-
tion term. A higher-order smoothing operator is added to aid oscillation control when simulating flow
over highly variable surfaces. Infiltration is simulated with the Green—Ampt model coupled to the surface
water component in a manner that allows dynamic interaction. The developed method will also be useful
for simulating irrigation, tidal flat and wetland circulation, and floods. Copyright © 2000 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Hydrologists are often faced with the challenge of predicting the timing and magnitude of
rainfall-generated run-off from watersheds for flood control, pollution prevention and ecolog-
ical purposes. An important component of the rainfall run-off process is Hortonian overland
flow, which is the shallow flow of water over the land surface prior to the major channelization
that results when the rainfall rate exceeds the soil infiltration capacity in at least some areas of
the watershed. In reality, the resulting overland flow depths and velocities are highly variable
and discontinuous in space and time as a result of small-scale ground surface unevenness
(microtopography) and natural spatial variation of soil hydraulic properties. In part, because
of numerical difficulties associated with simulating this process, hydrologic modelers have
traditionally been forced to simulate complex hillslopes as plane surfaces with constant
hydraulic properties using simplified equations. Most often, the kinematic wave approximation
to the full hydrodynamic equations is used. This approach, however, does not explicitly
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220 F. R. FIEDLER AND J. A. RAMIREZ

account for microtopography and spatially variable soil properties, thus the small-scale
dynamic interactions between surface and subsurface flow are ignored. The kinematic wave and
infiltration model parameters are then simply fitting parameters, requiring calibration data, and
physically based run-off predictions are accordingly difficult.

This paper presents a numerical method based on the MacCormack finite difference scheme
developed for simulating two-dimensional, spatially variable overland flow at a small scale. The
equations that describe this process are very similar to the well-known St. Venant and shallow
water equations, thus, the developed numerical method or aspects thereof can be applied to a
wide range of shallow water flow problems where discontinuous regimes are expected, such as
irrigation, tidal flat circulation, flow in ephemeral stream channels, and flash floods.

2. EQUATIONS

The two-dimensional hydrodynamic overland flow equations can be derived from the Navier—
Stokes equations by averaging over depth using kinematic boundary conditions and making
certain assumptions, including: that velocity is constant with depth, the vertical velocity and
acceleration components are small, the pressure distribution is hydrostatic, and horizontal shear
stresses are small [1-3]. In terms of the dependent variables, depth, 4, and unit discharge in the
x- and y-directions, ¢, and ¢, respectively, these equations are
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where g is gravitational acceleration; the other terms in these equations are described subsequently.

Equation (1) results from conservation of mass over a control volume, and Equations (2) and
(3) result from conservation of momentum in the x- and y-directions respectively. The source
term ¢, lateral inflow, is the rate of water vertically added to or removed from the control
volume. The various differential terms in the momentum equations represent different quanti-
ties related to conservation of momentum. In the x-direction, these terms are analogous to the
terms in the classical St. Venant equations as follows:
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The y-direction terms are related similarly.
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SHALLOW FLOW OVER AN INFILTRATING SURFACE 221

The magnitude of ¢, at any point in space and time is determined from rainfall rates and
infiltration characteristics; its computation is described later in Section 3.6. Interactive infiltra-
tion is a phrase sometimes used by hydrologists to refer to the dynamic interaction between
surface flow and infiltration caused by spatially variable soil properties, microtopography,
and/or rainfall. In essence, the amount of water available to interactively infiltrate at any point
is the sum of the available rainfall, the depth of water at the point, and surface water flowing
to that point from other areas (the dynamic component). Computation of this term depends
on the infiltration model used to estimate point infiltration rates, and special treatment is
required to ensure that fully interactive infiltration is simulated.

The bed slopes, S,, and S, are determined from the relative ground surface elevations, z,
as

0z 0z
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Measured data are used to estimate these slopes in a manner that must be consistent with the
numerical scheme.

Various methods exist for the evaluation of the friction slope terms, S, and S; The
two-dimensional form of the Darcy—Weisbach (D-W) equation is primarily used to compute
the friction slopes herein
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where f is the D—W friction factor. Natural overland flow is generally laminar, but is
‘disturbed’ by rainfall and topographic irregularities [4]. In the laminar flow regime, in which
viscous stresses are much larger than Reynolds stresses, f is computed as a function of
Reynolds number, Re, by the equation

S= e ®)

where K, is a resistance parameter related to the ground surface characteristics [5]. The
Reynolds number for two-dimensional flow is computed as

2 271/2
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where v is the kinematic viscosity of water. After substitution, the laminar flow friction slope
terms become
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222 F. R. FIEDLER AND J. A. RAMIREZ

To account for turbulent momentum transfer (Reynolds stresses), the well-known second-
order turbulent viscosity terms
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can be added in the x- and y-directions respectively. In these terms, ¢ is the coefficient of
turbulent viscosity or eddy coefficient [6].
To facilitate subsequent discussion of the numerical method, the overland flow equations are
presented here in vector form
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In these equations, 7 denotes the transpose, G(U) and H(U) are referred to as flux vectors, and
S(U) as the source vector. Hereafter, these vectors will be shown as G, H and S, but the
dependence on the vector of dependent variables U remains.

3. NUMERICAL METHOD

Several numerical challenges must be overcome before an adequate solution to these equations
is obtained for discontinuous flow over an infiltrating surface. Zero depth is the true initial
condition (before rainfall) at any point and persists until water ponds on the ground surface;
some areas will not pond at all during a simulation. Numerically this is not allowed since depth
appears in the denominator of several terms. As some areas are ponded and others not, the
flow regime is discontinuous, and large gradients in the dependent variables occur. After
ponding, the depths are generally small and correspondingly small numerical oscillations can
destroy the solution. Given the oscillatory nature of the equations, oscillation control is a
formidable challenge. Finally, the source terms are large compared with other terms in the
equations and may vary greatly in time and space.
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MacCormack’s explicit predictor—corrector finite difference method [7] was chosen as the
basic scheme after a review of the various numerical methods available [8]. This scheme has
been successfully used to solve similar equations [2,9-11]. For the system of overland flow
equations in two dimensions it is written

At
US=U} — ( -G/ ) — X(H/rfk_ 7 )+ AL S (11a)
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The subscripts j and k are spatial indices in the x- and y-directions respectively, and the
superscript n refers to the time level. The dependent variable vector predicted with Equation
(11a), denoted with an *, is used to compute the differences in the corrector step (11b). As
shown, backward spatial differences are used in the predictor step, and forward spatial
differences in the corrector. In order to obtain second-order accuracy with the MacCormack
scheme, it is necessary to alternate the spatial difference sequence in time. Here, for example,
a forward—backward difference sequence would be used to compute U”*+2. This form has been
used previously for less spatially variable overland flow computations [2].

Appropriate initial and boundary conditions must be specified. For the desired simulation,
the appropriate initial condition is zero depth and zero unit discharge everywhere in the
domain. The best way to handle this initial condition is to assign small, insignificant starting
depths [12]; the values used are discussed in subsequent paragraphs. In experimental plot
overland flow simulations (rectangular plots), the subject of another aspect of this research for
which this model was developed, closed boundaries formed by metal walls on three sides allow
no through flow, so ¢, and ¢, perpendicular to these boundaries is set to zero. Depths at closed
boundaries are determined by using inward differences in the continuity equation. At the plot
outlet, an open boundary is simulated by using inward differences in both the continuity and
momentum equations. Other boundary conditions are easily implemented for different
applications.

The maximum time step (with respect to stability) allowable in the MacCormack scheme
applied to linear hyperbolic equations is limited by the well-known Courant—Friedrich—Lewy
(CFL) condition, as are all explicit finite difference methods. The overland flow equations are
non-linear, however, and a rigorous stability analysis for these equations is exceedingly
difficult. The source terms place additional and problem-dependent restrictions on the maxi-
mum admissible time step for stability. Therefore, the CFL condition can only be considered
a general guideline here, and the maximum allowable time step for any particular problem will
be less than predicted by the CFL condition and determined by numerical experimentation.

As noted, the MacCormack scheme in the form presented above has been applied to the
overland flow equations [2]. While those authors attempted to simulate spatial variability
similar in nature to what was desired for this research, several limitations of their model and
thus the unmodified scheme are revealed upon close inspection. In order to circumvent the
problem of zero depths, these authors appropriately used a finite minimum depth of water over
the entire domain, but on the order of one-tenth the average steady state depth. Only fairly
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large, positive lateral inflows were simulated at all nodes (approximately 150 mmh !,
equivalent to an extremely large rainfall rate) starting at time zero, ensuring relatively large
predicted flow depths at all times; a discontinuous flow regime was not simulated. Lateral
inflow was constant in time, and interactive infiltration was not simulated. Finally, numerical
oscillations were evident in most of the reported hydrographs produced with spatially variable
source terms, and in the case of the single microtopographic surface modeled, apparently
caused the simulation to abort at approximately 500 s [2]. These restrictions have been
overcome with several modifications to the basic scheme.

3.1. Method of fractional steps

Two-dimensional finite difference schemes for systems of hyperbolic equations are sometimes
split into a series of one-dimensional finite difference operators known as fractional steps [13].
A fractional step MacCormack scheme has been previously applied to the St. Venant equations
and used to simulate reservoir and river flows [10]. In addition to simplifying application of the
scheme to a two-dimensional problem, those authors found that larger time steps can be used.
The fractional step MacCormack scheme is written

Uyt = L2(At/2)L,2(A/2)L, 1(At/2) L 1(At2)UY,, (12)

where L, and L, are one-dimensional difference operators, each applied twice and in a
symmetrical manner. The first x-direction operator, L 1, is written
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Only the x-direction flux vector and source terms are used to compute the new values of the
dependent variables, and the values computed in the corrector step are not representative of a
particular time so they are denoted with **. The other operators have a similar form.

To retain second-order accuracy overall and not introduce any directional bias, a symmetric
application of difference directions is required. Here, the following sequence was used:

L.1: Predictor, backward difference.
Corrector, forward difference.
L,1: Predictor, backward difference.
Corrector, forward difference.
L,2: Predictor, forward difference.
Corrector, backward difference.
L.2: Predictor, forward difference.
Corrector, backward difference.
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SHALLOW FLOW OVER AN INFILTRATING SURFACE 225

Thus, a fractional step MacCormack scheme was applied to the overland flow equations, with
second-order accuracy in both time and space.

3.2. Point-implicit friction slope treatment

The presence of depth in the denominator of several terms disallows zero depths, therefore, a
finite minimum depth is assigned to each node that is not ponded. It is primarily the /2 in the
denominator of the friction slope term (after it is multiplied by g/) that limits the magnitude
of the minimum depth. When depths are very small, the friction term is very large compared
with the other terms in the momentum equations. As depths increase rapidly during the early
stages of flow development, the friction slope term magnitude changes much faster than the
other terms. This phenomenon renders the momentum equations stiff and severely limits the
maximum admissible time step for stability; in fact, this phenomenon likely forced previous
researchers to use very small time steps relative to their grid spacing (Courant numbers <« 1)
and keep lateral inflows and initial depths large [2]. One way to handle stiff differential
equations is to use fully implicit methods. Alternatively, the offending source term(s) can be
isolated and evaluated point-implicitly [14]. In the x-direction, the friction slope can be isolated
and treated implicitly utilizing a Taylor series expansion about the nth time level at every point
(j, k) in the domain

AT
St =St + < aqfx> Aq.+ O(AqY), (14)

where Ag, = g” ! — ¢". The partial derivative of the friction slope term with respect to ¢, is
easily obtained, and the second- and higher-order terms are dropped. The empirical friction
slope term will likely contribute the largest error in Equations (10) [15]. Moreover, the
coefficient f'is generally unknown and determined by model calibration. Given the uncertainty
associated with computation of the friction slope, ignoring the second-order terms in the above
approximation will have little consequence, particularly in light of the benefits of point-implicit
treatment.

Since Ag, appears in the x-direction momentum difference equations, with some algebraic
manipulations a scalar factor can easily be determined and inserted into the momentum
equations to achieve the desired point-implicit treatment of the friction slope while maintaining
the overall explicit character of the scheme. This factor is

1
D =—————— 15
ST A@S, 3 (4
and is inserted, for example, into the L, 1 predictor step as
At At
Ui =U,—D 3 Ax (G} —Gi_1 )+ D 5 s e (16)
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where D =1 when computing 4 and ¢,, and D = D, when computing ¢,. The point-implicit
factor is derived and used similarly in the y-direction operators.

This method allows minimum depths on the order of 10~ ! m or smaller to be used, many
orders of magnitude less than steady state flow depths and clearly insignificant, and the time
step restriction imposed by friction slope stiffness is removed. Flow depths are not allowed to
be less than the minimum depth in the developed model, and ¢, and ¢, are also assigned
minimum values, where / is minimum such that 4 is 5% greater than the critical depth (e.g.
h=133x10""m, ¢,.=¢,=1.00x 10" "“ ms~").

3.3. Convective acceleration upwinding

Hyperbolic equations are oscillatory in nature, and the overland flow equations are no
exception. The shallow water equations are known to be prone to high frequency or 2 Ax’
oscillations (oscillation wavelengths equal 2 Ax) when centrally differenced because the value
of the slope estimated by the difference is independent of the value of the dependent variable
at the mid-point [16]. Upwind methods can reduce these oscillations, but they are generally
only first-order accurate. They are effective at reducing oscillations because disturbances in the
flow regime that affect convective acceleration can not be propagated upstream. For the
convection—diffusion equation, upwinding of the convective term has been shown to be
effective for reducing 2 Ax oscillations but the artificial diffusion introduced leads to low
accuracy for diffusion [17]. Upwinding the full shallow water equations for marine-type
applications has been reported to be inaccurate [3]. However, this study found that upwinding
just the convective acceleration term within the MacCormack scheme reduces 2 Ax oscillations
tremendously while having little effect on the overall accuracy. The convective acceleration
time discretization remains second-order accurate. To the knowledge of the authors, upwind-
ing this term within the MacCormack scheme is unique to this model.

For example, in the predictor step of the backward-difference L 1 operator, for flow in the
negative x-direction (from j+ 1 to j), the upwinded convective acceleration term is differenced

n2 n2
Piv1k Pjk

n n
j+ Lk h.ivk

(17)

and thus a forward difference is used in both the predictor and corrector step. In this model,
the type of difference used at each computational node is not allowed to change within an
operator cycle. Also, the appropriate predictor—corrector difference sequence is applied
conventionally in regions of converging flow, where second-order spatial accuracy is war-
ranted, as well as adjacent to boundaries for consistency with the boundary conditions.

3.4. Numerical oscillation control

Numerical tests indicated that additional oscillation control is sometimes necessary for
simulation of overland flow over surfaces with extreme hydraulic conductivity and microtopo-
graphic spatial variations. A method developed for the Euler equations [18] and used for
computation of unsteady free-surface flows with shocks using explicit schemes [19] was
implemented in the model after testing various forms of smoothing. This smoothing function

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 219-240



SHALLOW FLOW OVER AN INFILTRATING SURFACE 227

(also referred to as an artificial viscosity [19]) is particularly effective at controlling 2 Ax
oscillations. In the x-direction, the smoothing parameter is computed using the corrected
values of depth, assumed here to be positive

s sk ok
Ax [k = 20+

At BFF 2R R,

En= (18a)

fj+ 12k = & max(fj+ 1k fj,k); (18b)

where &, is a coefficient used to control the amount of smoothing; reported typical values are
in the range 0.5-3 [19], although much smaller values were used. The values of depth from the
corrector step are then modified by

R = hiE 4 & pa (BT e = BFE) = & 1o (BT — H7 % 1) (19)

This procedure is performed after the application of each difference operator, in the appropri-
ate direction. Addition of this smoothing function does not change the overall accuracy of the
MacCormack scheme [19].

3.5. Bed slope and turbulent viscosity term

To determine the bed slopes of Equation (4) when using the MacCormack scheme, it is
imperative to difference the input elevations (z) in the same direction as the depths are
differenced in the pressure force terms of the momentum equations, particularly when the bed
slopes change in space, to ensure a proper balance between these two terms. The bed slopes are
multiplied by depth, and the arithmetic average depth computed in the direction of the
difference should be used. For example, if a backward difference in the x-direction is used for
the pressure force and bed slope terms, the bed slope is multiplied by the average depth
(h; _ 1+ h;;)/2. Finally, viscosity related to turbulent momentum exchange modeled by the
second-order terms in Equation (9) is computed using standard central differences using the
latest values of the dependent variables.

3.6. Lateral inflow and interactive infiltration

The occurrence of Hortonian overland flow is completely determined by rainfall and ground
surface infiltration characteristics. A goal of this study was to account for fully interactive
infiltration when computing lateral inflow rates such that the effects of the relationship
between microtopography and infiltration characteristics on run-off could be explored. There-
fore, rainfall was considered constant in time when applied, and a common infiltration model
was used; it is the dynamic interaction allowed between surface water and infiltration due to
spatial variations in infiltration parameters and microtopography that is unique in this model,
not the infiltration model itself.

Saturation excess (Dunne) run-off generation is another important hydrologic mechanism
related to overland flow, in which the soil surface becomes saturated from below (e.g. due to
rising groundwater), thus precluding infiltration. For example, overland flow is often generated
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in riparian areas due to shallow water tables. Incorporation of this mechanism was beyond the
scope of this research. However, there are no limitations to the surface water component of the
developed model which would disallow future incorporation of saturation excess runoff
generation by adding additional methods for computing lateral inflow.

Currently, every node is considered to be initially not ponded (no surface water, but with the
soil at a specified initial moisture content), and the infiltration capacity is greater than the rate
of water supplied. The infiltration capacity at every computational node prior to ponding is
determined by the well-known Green—Ampt infiltration model [20]

¥ AD,
S = K,k[”‘F”‘ + 1], (20)

Jk

where K is the effective hydraulic conductivity, ¥ is the wetting front suction, Af is the
volumetric moisture content deficit (capacity minus initial) at the wetting front, and F is the
cumulative depth of water infiltrated. The rate of water available to infiltrate is equal to the
rainfall rate, r, plus any flow onto the node from adjacent nodes

n n
9x on | 9y on

21
Ax Ax D
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where ¢, ,, and g, ,, are determined by summing the adjacent-node discharges that are in the
direction of node (j, k). In this manner, overland flow generated in one area is allowed to
infiltrate into other areas if the capacity exists at any time in the simulation; thus, fully
interactive infiltration is simulated. If the node remains unponded ( f, > i,), then the average
infiltration rate over the time step is determined

Sk = e (22)

Ponding is also allowed to occur within a time step using a simple, well-known procedure [21],
even though the time steps normally used in these simulations are very small and the error
associated with not allowing for this phenomenon is likely negligible.

If a node is ponded (f, <i,), the rate available to infiltrate includes the depth of water on
that node

. hjnk 6]2 on q; on
= : . 23
ik =TT T Ay Ty @3)

If this rate is greater than the infiltration capacity, F"*! is computed using the Green—Ampt
equation for cumulative infiltration

=K
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Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 32: 219-240



SHALLOW FLOW OVER AN INFILTRATING SURFACE 229

which is solved using the well-known Newton—Raphson method [22]. The average infiltration
rate over the time interval is then estimated

ve F”’Zrl — F,{/(
e o9

In both cases, the average lateral inflow rate at a point over the time step is computed as the
difference between the rainfall rate and the infiltration rate

Qi =T1— ﬂe (26)

and is held constant over each time step. This source term does not act in either the x- or
y-direction (g, is assumed to be added to the control volume vertically), so half the computed
value is applied in the x-direction fractional steps, and half in the y-direction.

As defined here, lateral inflow at any particular node ( j, k) can vary from a minimum value
equal to

_ h qx on Qy on
Jimin = |:AZ + Ax + Ay ’ (27)

where all surface water on the node and coming towards the node from adjacent nodes is
infiltrated, to a maximum value of

Qimax = T (28)

which is the case for rainfall on an impervious surface. Typically, lateral inflow varies from 0
to r in rainfall excess-type hydrologic models, although minimum values equal to — /At occur
in models that allow partial interaction, i.e. only after rainfall [23].

4. RESULTS AND DISCUSSION

4.1. Comparative examples

The general properties of the basic MacCormack scheme and numerous numerical tests of it
related to similar equation sets have been reported elsewhere [2,7,9-11,19,24]. Here this paper
presents the results of several numerical comparisons performed to show the developed
model’s effectiveness related to spatially variable overland flow. Four comparisons are made:
(1) steady state results are compared with the kinematic wave solution for a plane with
constant lateral inflow, (2) a comparison is made with an analytical solution of a dam break
problem, (3) model results are compared with results of an experiment where spatially variable
lateral inflow was applied to a three-plane cascade, and (4) outflow hydrographs are computed
and compared with some recently published results for overland flow on an infiltrating plane.
The first comparative example is used as a general indicator of the ability of the hydrodynamic
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model to predict the flow variables for a simple case; large differences would indicate mass
balance problems. The second and third examples are more rigorous tests of the surface water
component of the model and its shock capturing ability. The fourth example tests both the
model’s infiltration and surface water components.

Table I shows the input parameters for the first comparative example. Model results for this
example were computed with a constant D—W friction factor, 20 grid points with Ax = 1.60421
m, At =0.5 s, and are shown in Table II. There is less than 1% difference between depth and
discharge computed by the models at the end of the plane.

The one-dimensional dam break problem comprising the second comparative has been
previously reported [25]. In this problem, a shock wave develops due to the instantaneous
break of a ‘dam’ at x = 1000 m, with the height of water on one side equal to 10 m, and the
height of water on the other side equal to 5 m. The channel bed is assumed to be horizontal
and frictionless. Figure 1 shows the model results compared with the analytical solution at 50
s produced with Ax =5 m and Az =0.8333 s. For this problem ¢ =&, = 0. It is interesting to
note here that upwinding the convective acceleration term does not appear to affect the model
accuracy or ability to capture shocks in a problem where this term plays a relatively large role.

Results from rainfall run-off experimental simulations on a 24 m long cascade of three
aluminum planes with spatially variable lateral inflow configured such that shocks form [26]
are compared with model results in the third example. Each plane section was 8 m long, with
slopes of 0.02, 0.015 and 0.01 in the downstream direction. In the most difficult scenario to
simulate, each section received constant lateral inflows of 389, 230 and 288 cm h ! respec-
tively, for a duration of 10 s. Figure 2 shows the model-predicted outflow hydrograph
compared with the experimental results produced with Ax =0.25 m and A7z =0.05 s. In this
experiment, a shock wave is produced, which arrives at the downstream end of the cascade at
approximately 25 s; the developed model reproduces these results well considering the potential
experimental errors, such as non-uniform lateral inflow [25], and better than other published
analytical and numerical methods [2,26,27]. Here, Manning’s equation was used to compute
friction slope, with a friction coefficient of 0.009.

Table I. Input parameters for the steady state kinematic wave test

Lateral Inflow 254 mmh~!
Length of plane 30.48 m

Bed slope 0.05

D-W friction factor 0.265

Table II. Results for the steady state kinematic wave test

Depth Discharge

(cm) (em? s
Kinematic wave 0.1462 2.1505
Hydrodynamic model 0.1471 2.1418
Percent difference 0.62 0.40
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Figure 1. Results for the dam break problem.
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Figure 2. Measured and simulated results for Iwagaki’s [26] experiment.

The fourth comparison uses some recently published results of overland flow simulations on
a 50 m long plane with spatially variable infiltration parameters [23]. Their model is comprised
of the kinematic wave equations coupled to the Smith—Parlange infiltration equation [28]
solved with a finite difference scheme on a characteristic computational net. There are several
important differences between their model and the current model that must be described before
the comparison is made.

A different infiltration model was used to compute lateral inflow; however, proper choice of
the Green— Ampt parameters ¥ and A0 corresponding to the Smith—Parlange parameter B will
cause the models to yield almost identical results. These near-equivalent parameters are derived
using the approximation of Youngs for the soil sorptivity, S [29]
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S=./2A0KY, (29)

and the relationship between the Smith—Parlange infiltration model parameters B and S [28]

S2
B= K (30)
Combining these equations results in B ="YA6. In this case, B=11 cm, for which ¥ =44 cm
and AO = 0.25 were chosen (note that other ¥ — A pairs could also be used). A comparison
of these models reveals that the Green—Ampt model predicts a slightly higher infiltration
capacity (and less rainfall excess) than the Smith—Parlange model as a function of cumulative
infiltration. Figure 3 shows infiltration capacity as a function of cumulative infiltration for the
near-equivalent parameter values stated above, and a hydraulic conductivity value of 3.53 x
10~* cm s~ !. When cumulative infiltration is zero, the curves converge, and as cumulative
infiltration increases they diverge and become essentially parallel. In light of these results, the
discharge predicted with the hydrodynamic model is expected to be slightly less than that
predicted with the kinematic wave model.

Manning’s equation was used for the friction slope term [23]; for this comparison the
developed hydrodynamic code was modified to use Manning’s equation as well. The following
simulations were performed using Ax =0.25 m and At =0.1 s.

Three cases with different deterministic hydraulic conductivity variations are presented here:
(1) constant hydraulic conductivity over the plane, (2) hydraulic conductivity decreasing
linearly with distance in the downslope direction, and (3) hydraulic conductivity increasing
linearly with distance in the downslope direction. In all cases, the mean value of hydraulic
conductivity is the same, equal to 3.53 x 10 =% cm s ~!. The minimum and maximum values

0.008
........ Smith-Parlange equation
—— Green-Ampt equation

7 0.006 { 3

£

3

>

E

8. 0.004

8

=}

£

g

Z 0.002 4

gowy TR

0.000

cumulative infiltration (cm)

Figure 3. Infiltration capacity curves for the Green—Ampt and Smith—Parlange infiltration capacity
curves with near-equivalent parameters.
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were 2.37 x 10~% and 4.70 x 10 ~* cm s ~ ! respectively. Other model parameters are presented
in Table III.

Figures 4—6 show the results of both models for cases (1), (2) and (3) respectively. It is seen
from these figures that the hydrodynamic model results are very close to those produced with
a characteristic-based kinematic solution on a plane where the kinematic approximation

Table III. Input parameters for the infiltrating kinematic wave test

Rainfall rate 177.6 mm h~!
Rainfall duration 20 min
Length of plane 50 m
Bed slope 0.04
Manning’s n 0.1
140
Woolhiser et al.
120 4 o hydrodynamic model
= 100 {
E
£ 80
& 60
~'=f )
% 40
20
0 : . . .
0 S 10 15 20 25 30

time (min)

Figure 4. Results for an infiltrating plane, uniform K (case (1)).

140

Woolhiser et al.

1201 o hydrodynamic model

100
80 4
60

discharge (mmh)

40
20

0 5 10 15 20 25 30

time (min)

Figure 5. Results for an infiltrating plane, K decreasing downslope (case (2)).
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1. Woolhiser et al.
1204 o hydrodynamic model

discharge ( mmh-)
[=
[=]

0 5 10 15 20 25 30

time (min)

Figure 6. Results for an infiltrating plane, K increasing downslope (case (3)).

should be close to the solution of the full hydrodynamic equations, and the difference is
attributable to the different infiltration models.

4.2. Applications

The mathematical model presented in this paper was developed to explore the effects of
spatially variable infiltration and microtopography on overland flow. Data to support such
simulations were collected from a semi-arid grassland in northeastern Colorado. Here, we were
also interested in the potential effects of grazing on hydrologic response with respect to
spatially variable hydrodynamics and interactive infiltration. The results of a few simulations
are presented below that show the utility of the developed model in this respect.

The bottom portion of Figure 7 is a ground surface plot, developed using measured
microtopographic relief data [8], of an approximately 1 m? area of grassland. The top portion
of this figure shows the predicted flow depths after 25 min of simulated rainfall at 58.4
mm h~'. This simulation was performed with the spatially constant infiltration parameters:
K=21x10"*cms~ !, ¥ =11 cm and A0 = 038. The resistance parameter K, was assumed to
be 1500, in the range reported for sparse vegetation [5]. The domain was discretized with a
constant grid spacing of 1 cm in both the x- and y-directions and a time step of 0.025 s. The
coefficient of turbulent viscosity, &, was assumed to be equal to 2.0, and the smoothing
parameter, &, was 0.002. Figure 8 shows the model-predicted velocity vectors for the same
time. The hydrodynamic model predicts the complex, spatially variable flow hydraulics
associated with true overland flow. Even within this small area, there are regions of converging
and diverging flow, and well-defined microchannels (small, well-defined tortuous flow paths
around microtopographic highs).

There is a particular relationship between vegetation and microtopography common on
grasslands in semi-arid environments, where microtopographic lows (depressions) are occupied
by bare soil, and highs (hummocks) by vegetated soil. The bare- and vegetated-soil patch size
and microtopographic wavelength both range from approximately 0.05 to 0.5 m. Since the
measured bare-soil hydraulic conductivity is about an order of magnitude less than the
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Figure 7. Microtopographic ground surface and predicted flow depths for first example application.

measured vegetated-soil conductivity, rainfall will cause water to pond on bare soil well before
on vegetated soil. Bare-soil water depths increase as a rainfall event progresses, and vegetated
zones become inundated as water migrates on the ground surface and ground-surface
depressions fill. Since the hydraulic conductivity, and therefore infiltration capacity of the
vegetated solil, is large, water that ponds in bare areas can infiltrate into vegetated areas as they
become inundated. This aspect of interactive infiltration (run-on at a small scale), not
accounted for by other rainfall run-off models, has a significant effect on the hydrologic
response of grasslands [8].

A spatial distribution of infiltration parameters that mimics the physical system can be
developed from the microtopographic data presented in Figure 7 by assigning all nodes with
elevations greater than the mean elevation infiltration parameters representative of vegetated
soil, and assigning all nodes with elevations less than the mean elevation infiltration parame-
ters representative of bare soil. This distribution is shown on Figure 9 for the small area
described previously. A simulation was performed with the bare-soil parameters K= 2.1 x
10-* ecms~!, ¥=11 cm and Af=0.38, and the vegetated-soil parameters K=1.5 x 103
cms~!, ¥ =9 cm and A0 = 0.42; these parameters were derived from field measurements and
values typical of the observed soil types.
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Figure 8. Velocity vectors of flow on the ground surface depicted on Figure 7. Maximum velocity is 7.43
—1
cms .

With all other parameters the same as in the first example application, simulations were
performed that illustrate the model’s ability to simulate interactive infiltration. Figure 10
shows contours of the cumulative depth of infiltrated water. As expected, infiltrated depths are
significantly greater at the bare/vegetated soil interfaces. Figure 11 shows the outflow
hydrograph for this simulation, plus the outflow hydrograph for a simulation performed with
a slightly increased vegetated-soil hydraulic conductivity. The decrease in observed run-off is
solely attributed to interactive infiltration, since the simulated rainfall rate alone will not cause
ponding on the vegetated soil at any time. This effect is even more significant for larger areas;
Figure 12 shows partial outflow hydrographs for two simulations of an area 8.5 x 2.5 m?. As
with the smaller-area simulations, only the vegetated soil hydraulic conductivity was varied to
produce these hydrographs, where the parameter spatial distribution was derived and the
magnitudes are the same as before. Since vegetated-soil hydraulic conductivity is reduced by
grazing but bare-soil conductivity can be left unaffected [8], it is clearly important to simulate
interactive infiltration for predicting the hydrologic effects of grazing.

Note that the effective values of &, used for the above simulations are very small, much
smaller than the reported typical values [19], and only large enough to control oscillations in
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Figure 9. Infiltration parameter spatial distribution.

the vicinity of discontinuities in the flow regime; the upwinded convective acceleration term
provides most of the control necessary. Currently, the necessity of the turbulent viscosity term
is being evaluated. Preliminary results show that this term is not required for stable solutions
of problems with large spatial variability, and its magnitude is generally very small compared
with that of the friction slope term. Unrealistically large values of ¢, though not used here, can
greatly affect the velocity field [11].

5. CONCLUSION

A numerical method based on the MacCormack finite difference scheme for simulating
discontinuous shallow flow over an infiltrating surface has been developed. Enhancements
to the basic scheme include casting it in fractional steps, treating a stiff source term point-
implicitly, and upwinding the convective acceleration term. Full dynamic interaction between
surface water and infiltration is achieved, where infiltration is modeled with the Green—Ampt
equation. It has been shown to be useful for simulating overland flow when spatially variable
infiltration and microtopography are important.

With proper attention given to the scale of application (determined by the physical process
to be simulated and the degree of spatial variability inherent to that process) such that
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Figure 10. Predicted distribution of cumulative infiltration.
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Figure 11. Hydrographs produced with different vegetated-soil hydraulic conductivity distributed as
shown in Figure 9.
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Figure 12. Partial hydrographs for 8.5 x 2.5 m? area produced with different vegetated-soil hydraulic
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conductivities.

scretization errors are small, the developed method will have several other practical applica-

tions. For example, the authors are currently developing a model based on this method to
simulate rainfall-driven flash floods, such as the destructive flood that occurred in Fort
Collins, Colorado, USA during the summer of 1997. Other potential applications include
irrigation, flow in ephemeral stream channels, and tidal flat and wetland circulation.
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